

Remote Sensing Laboratory

Dept. of Information Engineering and Computer Science

University of Trento

Via Sommarive, 9, I-38123 Povo, Trento, Italy

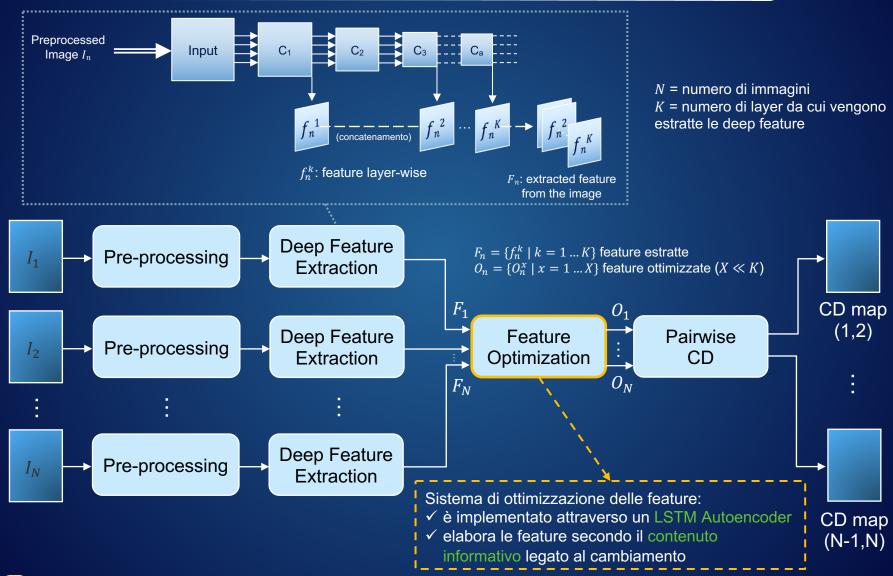
APPROCCIO ALL'ANALISI DI IMMAGINI SAR MULTITEMPORALI BASATO SU DEEP FEATURE

Studente: Clementi Massimo

Relatore: Bruzzone Lorenzo

Correlatori: Bovolo Francesca

Saha Sudipan


E-mail: massimo.clementi@studenti.unitn.it

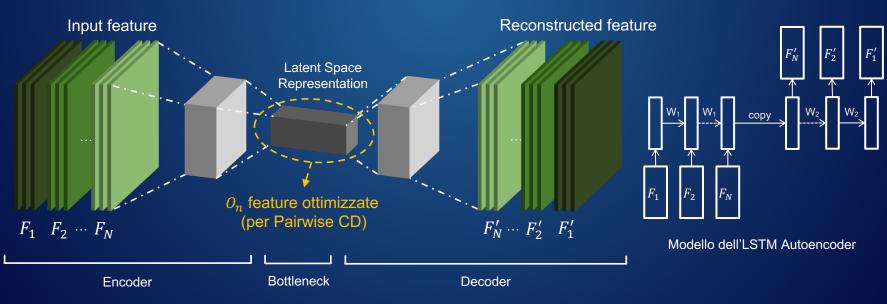
Introduzione

- ✓ L'analisi multitemporale di VHR SAR rende necessario considerare il contesto spaziale, favorendo l'utilizzo di reti neurali.
- ✓ L'impiego di CNN per l'estrazione di deep feature da immagini si è dimostrato molto efficace, tuttavia la selezione di queste feature rimane un problema critico per la massimizzazione dell'accuratezza delle mappe CD.
- ✓ L'obiettivo è quello di sviluppare un sistema in grado di ottimizzare le feature estratte, riducendo la dimensionalità del problema mantenendo però intatta l'informazione relativa ai cambiamenti.
- ✓ Nella letteratura sono presenti meccanismi di selezione delle feature via varianza ma prendono in considerazione solo due immagini invece dell'intera serie.

University of Trento. Italy

Metodo proposto

95

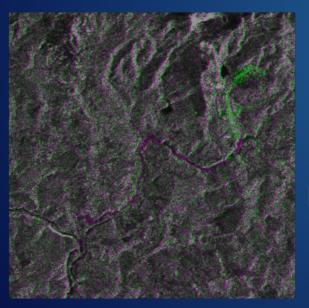

University of Trento, Italy

LSTM Autoencoders

Autoencoder (AE)

- ✓ struttura "encoder-decoder";
- ✓ comprime l'input in una rappresentazione "latent-space" (spazio di dimensionalità minore, bottleneck) e cerca di ricostruirlo dalla rappresentazione compressa.

LSTM Autoencoder: implementazione di un autoencoder con architettura LSTM, in grado di analizzare sequenze di dati; nello specifico nel metodo proposto, sequenze multitemporali di feature, estratte separatamente da ciascuna immagine.



4

Dataset per CD Multitemporale

Dataset

Luogo	Brumadinho, Brasile
Incidente	Crollo diga
Data	25/01/2019

- incremento backscattering
- decremento backscattering
- nessun cambiamento

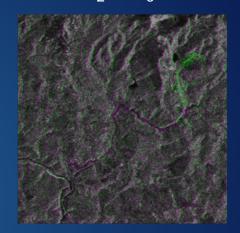
Sensore	Sentinel-1
I ₁	05/01/2019
l ₂	17/01/2019
l ₃	29/01/2019
I_4	10/02/2019
l ₅	22/02/2019
Pixel spacing (metro/pixel)	10
Righe, Colonne (pixel)	768

Composizione falso colore multitemporale (R=17/01/2019, G=29/01/2019, B=17/01/2019)

University of Trento, Italy

Risultati CD Multitemporale

CD tra I₂ ed I₃



 $accuracy\% = \frac{551347}{589824} \times 100 = 93,48\%$

Reference Map tra I₂ ed I₃

Falso Colore tra I_2 ed I_3

Immagini ottiche

Conclusioni e sviluppi futuri

Conclusioni:

Il metodo proposto:

- √ riduce la dimensionalità delle feature mantenendo le informazioni relative al cambiamento;
- √ mostra risultati promettenti su un dataset S1.

Sviluppi futuri:

- ✓ Migliorare il CD multitemporale per permettere l'analisi di tutte le immagini contemporaneamente.
- ✓ Validare il metodo proposto su altre immagini telerilevate.

University of Trento, Italy