Massimo Clementi

Introduction to Multi-Objective Optimization **Chapter 40 - LIONBook**

University of Trento

26 May 2020

Brief recap

Goal: find the **optimal point(s)** of a model, for which **no other point is better**

 Ω is the set of possible points $x^* : f(x^*) \le f(x), \quad \forall x \in \Omega$ (or \ge)

More generally:

minimize/maximize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Omega$,

2

Brief recap Example

 $x_1, x_2 \in \Omega$ and $f(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}$

Suppose:

- minimization task
- $-f(x_1) = 10, f(x_2) = 30$

Can we determine which is the **better solution** between the two? $f(x_1) < f(x_2)$ therefore $x_1 \rightarrow$ trivial

Multi-Objective optimization Example

- $x_1, x_2 \in \Omega$ and $f(\mathbf{x}) = \{f_1(\mathbf{x}), f_2(\mathbf{x})\} : \mathbb{R}^n \to \mathbb{R}^2$ (objectives)
- Suppose:
- minimize $f_1(\mathbf{x})$ and maximize $f_2(\mathbf{x})$ at the same time
- $-f(x_1) = [15, 15]$ and $f(x_2) = [30, 30]$

Can we determine which is the **better solution** between the two? > <u>Not</u> trivial

Multi-Objective optimization Mathematical formulation

Statement:

minimize f(x) =subject to $\mathbf{x} \in \mathcal{S}$

where:

As anticipated before, the problem is **ill-posed** when the objective functions are conflicting, it is not possible to optimize the objectives independently

= {
$$f_1(\mathbf{x}), \ldots, f_m(\mathbf{x})$$
}

 $\mathbf{x} \in \mathbb{R}^n$ are the variables and $\mathbf{x} \in \Omega$ feasible region $\mathbf{f}: \Omega \to \mathbb{R}^m$ is made of *m* objective functions

Multi-Objective optimization Mathematical formulation

Input space

Objective space

Multi-Objective optimization

For a non-trivial multi-objective optimization problem, objectives are **conflicting** and it is <u>not</u> possible to find a solution that optimize all objectives at the same time.

What we have to do is to evaluate tradeoffs

Pareto Optimality

• Define the **objective vector**:

 $\mathbf{z} = \mathbf{f}(\mathbf{x}) = \{f_1(\mathbf{x}), \dots, f_m(\mathbf{x})\}$

- Consider a minimization task, an objective vector **z** is said to **dominate z'** if $z_k \le z'_k \quad \forall k$ and $\exists h$ such as $z_k < z'_k$
- A point \hat{x} is **Pareto-optimal** if there is no other $x \in \Omega$ such that $\mathbf{f}(x)$ dominates $\mathbf{f}(\hat{x})$

Pareto Optimality Pareto frontier

 The Pareto frontier is made by the set of all the Pareto-optimal solutions

 Only on the Pareto frontier it makes sense to consider tradeoffs, because for points outside of it the solution would be suboptimal

beauty

Pareto Optimality Example

Problem: find best airplane tickets

	Price	Comfort			Price	Comfort				
	70.0	4.0			70.0				Price	Comfort
A	/0€	10		A	/0€	10		Δ	70 €	10
В	50 €	7		В	50 €	7		~	700	10
		0						В	50 €	7
C	65€	6		С	65 €	6		Р	∕10 €	5
D	40 €	5		D	40 €	5		D	40 C	5

B dominates C $B_{price} \leq C_{price}$ but $B_{comfort} \geq C_{comfort}$

(minimize price and maximize comfort)

Pareto frontier

Pareto Optimality

We can explicit tradeoffs between objectives and find the optimal

and then

minimize/maximize $g(\mathbf{x})$ subject to $\mathbf{x} \in \Omega$,

<u>Problem</u>: weights w_1, w_2 of the linear combination are **unknown**

points in the Pareto frontier applying a combination of the objectives.

 $g(\mathbf{x}, \mathbf{w}) = w_1 f_1(\mathbf{x}) + w_2 f_2(\mathbf{x})$

Multi-Objective optimization To sum up

- MOOP consist in **multiple objectives** to optimize
- No univocal optima solution, need tradeoffs
- than others

Pareto Optimality helps distinguish solutions which behave better

Consider tradeoffs on the Pareto Frontier only, undominated solutions

Following: main Pareto optimization techniques

